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Terminology, etc.

® |'m using the Stokes formalism
® |ntensity |, linear Q & U, circularV
® Sensitivity: ability to detect a signal
® Accuracy: ability to know what that signal is
® Pathetic: 102 or worse

® Respectable: 104 or bigger

A ——




History of Solar
Polarimetry

® Pieter Zeeman and Hendrik Lorentz
discover the “Zeeman effect” in 1896:
spectral lines are split in the presence of
magnetic field.

® Hale finds magnetic field in sunspots in
1908 using a primitive spectro-polarimeter.
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Interpretation for Solar
Physics Applications

® We measure the Stokes 4-vector as a
function of wavelength in spectral lines for
remote sensing of plasma parameters.

® Apply an “inversion” process: synthesize,
compare, repeat. (That’s really a forward
model, actually.)

® VWe need a model atmosphere, and
calculate polarized radiative transfer.
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How instrument
development works

® A spectro-polarimeter to measure
magnetic field in prominences and filaments

® T[raditional eschelle spectrograph

® Hel 587.6 nm (D3) or Ha 656.3 nm, and
He | 1083.0 nm




How instrument
development works

® Built and deployed, but... it didn’t work




What’s a Modulator?

® Detectors are sensitive to intensity

® Use optical components to change the
input Stokes vector in a known way, i.e.,
“modulate”

® Use an “analyzer” that selects usually Q

® Demodulate the measured intensities to
find the Stokes vector
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Modulator Anatomy

® Retarder: constant retardance and fast axis
® Birefringent crystal or polymer

® Constant retarder with variable fast axis
® Rotating retarder, Liquid Crystal

® Variable retarder with constant fast axis

® |iquid Crystal, PEM, Pockels Cell
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The Modulation Matrix

® For each state i of the modulator, the
measured intensity can be written as the
product of the Stokes vector with a
‘modulation vector’: i = M, ¢ S

® The modulation matrix O is composed of
rows M; Oi,j — (M,‘)j.

® The measured intensities are now given by
| = O «S.




Iwo Example
Modulators

Type Fast axis angle Retardance Modulation Vector
LCVRs (0°,45°) (180°, 360°) (1,+1,0,0)
(180°, 180°) (1,-1,0,0)
(90°,90°) (1,0,+1,0)
(90°,270°) (1,0,—1,0)
(180°,90°) (1,0,0,+1)
(180°,270°) (1,0,0,—1)
Type Retardance Fast axis angle Modulation Vector
FLCs (180°, 102.2°) (0°,—18.1°) (1,+1/+/3,+1/+/3,=1//3)
(0°,+18.1°) (1,+1/+/3=1//3,+1//3)
(45°,—18.1°) (1,=1//3,+1/+/3,+1/4/3)
(45°,+18.1°) (1,=1//3,=1//3,=1//3)




VVhat makes a good
modulator?

® Some pre-determined modulation states
that | like for some reason? Not really...

® |d like:
® A simple, manufacturable design
® Broad spectral coverage

® Near-optimal performance at all
wavelengths of interest




Efficiency

® See Del Toro Iniesta & Collados 2000
(2000ApOpt..39.1637D)

® After a lot of math, they find the efficiencies:
€ = (n(OTO)—lii)—l/Z

® €2 <|and €p?*+ €y + €y < |

® Notice that 0i = n™"2 0/ €, where T is the
error on a single measurement
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Example Modulator
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Po omatic

® Poly-: from TTOAUC, many

® Achromatization of the efficiency of the
modulator

® Difficult to design manually, so employ a
computer to optimize

® Ve use a Monte-Carlo-like method




Examples
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XShooter

Efficiency polychromatic modulator
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Summary

® Achromatization of the modulation matrix
may be an unnecessary constraint on the
design of spectrally-diverse modulators

® A modulator needs to be efficient at all
wavelengths of interest

® Polychromatic modulators can be found
using numerical exploration of the
parameter space using computer codes




A word about
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A word about
demodulation

® You do not get to choose how you
demodulate

® With 4 states, there is only one way

® With more than 4 states, there are
infinitely many ways but only one way that
optimizes the retrieval of the Stokes
parameters from the observed intensities




